A simulation study of the electrostriction effects in dielectric elastomer composites containing polarizable inclusions with different spatial distributions.
نویسندگان
چکیده
Controlled actuation of electroactive polymers with embedded high dielectric nanoparticles is theoretically analyzed. If the inclusions are placed randomly in the elastomer body, the composite always contracts along the direction of the applied field. For a simple cubic distribution of inclusions, contraction occurs if the applied field is directed along the [001] direction of the lattice. For inclusions occupying the sites of other lattice structures such as body-centered or face-centered cubic crystals, the composite elongates along the field direction if it is applied along the [001] direction. The stability of the elongation against the imperfectness of the lattice site positions and the distortion ratio of the initial structures are examined. Finite elongation windows show up for the initially distorted body-centered cubic and face-centered cubic crystals as a function of the distortion ratio of the initial structure. The existence of these elongation windows are also predicted from the analysis of the electrostatic energy of the distorted body-centered cubic and face-centered cubic lattice structures. Our results indicate that the electrostriction effect, which is the main contribution to the actuation of low aspect-ratio composites, strongly depends on the geometry of the spatial distribution of nanoparticles, and can thereby largely be tuned.
منابع مشابه
Simulation Study of the Electrostriction Effects in Dielectric Elastomer Composites containing Polarizable Inclusions with Different Spatial Distributions
Controlled actuation of electroactive polymers with embedded high dielectric nanoparticles is theoretically analyzed. If the inclusions are placed randomly in the elastomer body, the composite always contracts along the direction of the applied field. For a simple cubic distribution of inclusions, contraction occurs if the applied field is directed along the [001] direction of the lattice. For ...
متن کاملNonlinear electroelastic deformations of dielectric elastomer composites_ II — Non-Gaussian elastic dielectrics
This paper presents an analytical framework to construct approximate homogenization solutions for the macroscopic elastic dielectric response — under finite deformations and finite electric fields — of dielectric elastomer composites with two-phase isotropic particulate microstructures. The central idea consists in employing the homogenization solution derived in Part I of this work for ideal e...
متن کاملElectrostriction in field-structured composites: Basis for a fast artificial muscle?
The electrostriction of composites consisting of dielectric particles embedded in a gel or elastomer is discussed. It is shown that when these particles are organized by a uniaxial field before gelation, the resulting field-structured composites are expected to exhibit enhanced electrostriction” in a uniform field applied along the same axis as the structuring field. The associated stresses mig...
متن کاملThe Overall Elastic Dielectric Properties of Fiber- Strengthened/Weakened Elastomers
By employing recent results (Lopez-Pamies, O., 2014, “Elastic Dielectric Composites: Theory and Application to Particle-Filled Ideal Dielectrics,” J. Mech. Phys. Solids, 64, p. 6182 and Spinelli, S. A., Lefèvre, V., and Lopez-Pamies, O., “Dielectric Elastomer Composites: A General Closed-Form Solution in the Small-Deformation Limit,” J. Mech. Phys. Solids, 83, pp. 263–284.) on the homogenizatio...
متن کاملHomogenization of Elastic Dielectric Composites with Rapidly Oscillating Passive and Active Source Terms
This paper presents the derivation of the homogenized equations for the macroscopic response of elastic dielectric composites containing space charges (i.e., electric source terms) that oscillate rapidly at the length scale of the microstructure. The derivation is carried out in the setting of small deformations and moderate electric fields by means of a two-scale asymptotic analysis. Two types...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 17 48 شماره
صفحات -
تاریخ انتشار 2015